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Summary—The design procedure for optimum broadband nega-

tive-resistance amplifiers is given, by reference to the work of Fano

[8], on the broadband matching of arbitrary impedances. Complete

sets of curves are given which indicate the limits on the gain-band-

width performance which can be achieved for a particular negative-

resistance device, while also showing the ripple in gain and the

resulting phase response obtained. The optimum amplifiers are

also compared with others of the same class, and it is found that

considerable advantage in terms of ripple and phase response can be

gained by using nonoptimum designs in certain cases. The paper

also includes explicit formula for the element values of the matching

network applicable to both optimum and nonoptimum designs. A

design example is given for a tunnel-diode amplifier.

INTRODUCTION

T

HE REFLECTION type negative-resistance am-

plifier nowadays displays very desirable char-

acteristics for many applications. The amplifier

consists of a negative resistance terminating one port of

a circulator, which amplifies and reflects a wave in-

cident upon it. The circulator separates the incident and

reflected waves. Several devices such as tunnel diodes,

parametric amplifiers, and masers display a negative in-

put resistance over some part of the microwave band,

together with associated low-noise properties, which

render them attractive in this mode of operation. The

parametric amplifier and maser suffer the disadvantage

of having inherent narrow bandwidths, but have very

low noise factors, while the tunnel diode has an inher-

ently broader bandwidth but poorer noise factor. The

insertion of a lossless two-port network between the

negative-resistance device and the circulator port which

it would otherwise terminate yields the possibility of

absorbing the energy storage elements associated with

the negative resistance which limit the amplifier band-

width. The design of this Iossless two-port network for

use with parametric amplifiers has been considered by

Matthaei [1], Kuh and Fukada [2], and by Kyhl,

McFarlane and Strand berg [3] (in restricted form) for

the maser. The application of this principle to the tunnel

diode has also received considerable attention [4]- [6].

The design of the two-port coupling network is ac-

complished by the use of a low-pass lumped circuit

prototype network, which is then transformed to the

required impedance level and center frequency. Finally

each resonant circuit in the lumped element filter has to

be approximated by a microwave resonator.
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A recent paper by Getsinger [7] gives a design pro-

cedure for reflection type amplifiers of the configuration

just discussed, based on tables of element values for the

low-pass prototype network. In that paper the matching

network was chosen to have a Chebyshev response for

the gain-frequency characteristic, and the properties of

various networks of this class were tabulated. The work

presented here is also based on a Chebyshev reponse for

the gain-frequency characteristics, but by reference to

the work of Fano [8] the limits on the achievable per-

formance are established, and comprehensive design

curves are given which enable a rapid design to be ac-

complished. An amplifier is considered to be optimum

if it has the largest bandwidth for a given number of

elements in the coupling network and a given negative-

resistance device. Closed formulas are given for the

element values of the prototype filter from work by

Levy [9].

THE LOW-PASS PROTOTYPE COUPLING NETWORK

The type of negative-resistance element considered

here consists of a negative resistance, – R, shunted by a

capacity, C. It has been shown [7] that practical

negative-resistance devices approximate this ideal model

to a good degree of accuracy over bandwidths of less

than 20 per cent. The problem to be solved may be

stated by reference to Fig. 1 which shows a circulator of

characteristic impedance, Ro, a lossless coupling net-

work, N, and the idealized negative resistance. The

power gain of this amplifier is the square of the modulus

of the reflection coefficient, p, at the terminals 22’, but

since N is Iossless this is also the modulus of the reflec-

tion coefficient at the terminals 11’, so that

G= 1P]’.

The gain is ideally required to have a specified value

-R

%-J
load &

Fig. l—Circulator and negative resistance with lossless
coupling network N.
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over some bandwidth, COl—u:, and to be zero outside

that band. Transformed to low-pass terms this means a

specified gain from O — w,, where w, = WI — wZ, and zero

above wC.

Aron [5] has shown that if a lossless network termi-

nated in a positive resistance, R has an input reflection

coefficient p’, and the same network has a reflection co-

efficient p when terminated in — R,

IP’1=~”
IPI

Bode [IO] and Fano [8], have solved the problem of

matching an RC load to a pure resistance in the case

where R is positive and since the reflection coefficient for

the case where R is negative is simply related to the re-

flection coefficient when R is positive, the results for that

case may conveniently be adapted for use with negative

resistance.

Bode [IO] has shown that (when R is positive)

(1)

so, in matching problems associated with passive net-

works where a ‘(worst match)’ is specified i.e., the

maximum value of Ip’1 , (1 p’maxi ) is specified, the

integral in (1) indicates that the minimum value of

IP’I should not go to zero or the integrand will become

infinite at these points thus restricting the bandwidth

over which \ p’ max I is not exceeded. Substituting \ p[

for l/]p’\ in (1) and since Ipl =G’fz we get

scc

log. G1/2dw5 ~TE“ (2)
o

Specifying a maximum value for ] p’ I is equivalent to

specifying a minimum gain, G rein, so that applying the

argument just given for passive networks, (2), shows

that for a specified value of G rein, the maximum gain

should not approach infinity at any point or the effec-

tive bandwidth will be reduced.

Returning now to discussion of passive networks, (1)

shows that the ideal form of [p’ I as a function of w is

that shown in Fig. 2. Fig. 3 shows the form of the cor-

responding ideal transmission characteristic ( It’\ 2= 1

– Ip’ 12). For this ideal characteristic the integral of

(1) becomes

Cdc loge .—

[p’ I Lx = .;C
(3)

thus yielding the ultimate limit on the bandwidth for a

given degree of match and a specified load.

Since the ideal characteristic is obviously not realiz-

able in practice with a finite number of circuit elements,

we must seek an approximation which is realizable. The

Chebyshev approximation of the type

is the most suitable, as pointed out by Fano [8], since

such an approximation gives the sharpest cutoff (apart

from the elliptic function filter) and thereby yields the

largest bandwidth in the sense requirecl here.

Tn(u) is the Chebyshev function of order n, 1/(1+ k’)

is the zero-frequency insertion loss and h is a p~lrameter

determining the ripple.

Fig. 4 shows \ t’ \ 2 as a function of w. I p’ I is given by

\p’]’=l–\t’I’ i.e.,

[ /,2= _~’ + J,’T,,’(w)
1 + k’ + lz2T)z2(ij

so that

lP’12max= ‘2+~’ _
l+k’+k’

and the matching network is constrained by the require-

ments that the first element is the load capacitance, C.

1 --- ——— —- ——-. _______

k

Ifisxf
———.

o I L)
Fig. 2—Ideal reflection coefficient-frequency response.

o I LJ

Fig. 3—Ideal transmission-frequency reslpcmse.
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Fig. 4—Chebyshev response with finite insertion loss
in the pass band.
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Fano [8], then solved the problem of minimizing

1P maxi subject to this constraint.

Using Fano’s notation we define variables a and b

as follows

l+k’
= sinhz na

~2

k’
= sinh2 nb

G

from which

It may be shown [8], that the network constraint im-

posed by the load capacitance may be expressed in

terms of a and b as

2 sinh a — sinh b
—

CJ,RC 7?-
sin —

2fa

(4)

minimizing [p’ max \ subject to this condition yields

tanh na tanh nb
— ; (5)

cosh a COSh b

a and b are then found by solving (4) and (5) simul-

taneously.

This work on passive networks is related to the nega-

tive-resistance case by the transformation Ip’ I =1/I p [

= l/G’/2, so that for the ideal shape of curve previously

discussed we have

o). log. G112 = L
RC

(6)

which gives the ultimate limit on the gain-bandwidth

performance of the amplifier. For the same idealized

negative resistance used without a matching network

the corresponding expression (for G>>3 db) is (see

Appendix I)

(G’/2 – I)u.= ;

where co. is the 3 db bandwidth, thus showing the

potential gain-bandwidth advantage obtainable through

the use of a matching network.

Again, since the ideal characteristic is not realizable,

we use the same approximation as before, but since

1P] =1/1p’1 we have

lpmin]’=Gmin=1+k2+~2,k, + ~2

With this transformation Fano’s optimization procedure

yields an optimum broad-band amplifier in the sense that

for a specified G min the bandwidth is the largest possi-

ble. Since the optimization procedure yields values for a

and b in (4) and (5) the value of G max is obtained, thus

there is a particular value of gain ripple corresponding

to the largest bandwidth.

OPTIMUM BROAD-BAND REFLECTION AMPLIFIERS

Fano’s results were presented in the form of graphs

showing bandwidth normalized with respect to the RC

terminating network and log, (1/ I p’ max I ), for various

numbers of elements in the matching network, thus en-

abling k and h to be determined.

Similar curves can be drawn for the negative-resist-

ance terminated network showing minimum gain

against normalized bandwidth, the ripple being that

corresponding to the optimum bandwidth. The normal-

ization factor on the bandwidth is l/(27rRC) the cutoff

frequency of the load. Fig. 5 shows the curves for vari-

ous numbers of elements in the matching network, and

it is seen that the results converge rapidly towards the

infinite element limit for n greater than 8. These results

enable the gain-bandwidth limitation for any par-

ticular negative-resistance device and a given number of

elements to be determined. Correspondingly, they en-

able one to say how many elements are required for a

given specification of gain and bandwidth.

In the case of the passively terminated network no

attention is given to the ripple which results from

Fano’s optimization procedure since it is usually un-

important.

This ripple is

Ip’ max

p’ min I
However, in the case of the reflection amplifier the cor-

responding ripple is

p’ min 2 G max
8= —

p’ max G min ‘

and this determines the ratio of the maximum gain to

the specified minimum gain in the amplifier pass band.

This ratio is given by

G max (1+ k’)(k’ + i’)
—

G min – kz(l + k’ + W) ‘

and since k and k are determined from Fano’s results,

the corresponding gain ripple can be found. Figs. 6 and 7

show curves of gain against ripple and ripple against

bandwidth for various numbers of elements. The three

sets of curves in Figs. .5, 6, and 7 give the complete per-

formance in terms of gain, bandwidth, and ripple for the

optimum negative-resistance reflection type amplifier.

In order to complete the design once a particular n

has been chosen, the element values of the matching net-

work are required. These can be found from the re-

currence relationships derived by Levy [9] from Taka-

hasi’s results [11]. Referring to Fig. 8 the recurrence

relations are
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Fig. 5—Gain-bandwidth curves foroptimum amplhiers.

Fig. 6—C,ain-ripple curves foroptimum amplifiers.
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Fig. 7—Bandwidth-ripple curves for optimum amplifier.
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Fig. 8—Low-pass prototype filter.

gl =

g,g,+l =

x = sinh a =

y=sinhb=

2 sin Z
2n

= RCW<
%—y

2Y–1 2r + 1
4 sin — m. sin-——— 7

2JL 2 ?2

7’T m
XZ + yz + sin2 — — 2xy cos —

fb n

r=l,2,3. ..~, ~,

x and y are given by

{

6(G min -L 1) ‘/2
sinh Inn sinh–l —

8 --1 }

{

G min -- 1
sinh l/n sinh–l

)

11~

G min (8 – 1)

where a and b are defined in the previous section

u. is the actual bandwidth.

and

G min and 8 are found from Figs. 5 and 7, and the use

of these results will be given in a later section.

THE G.JIN RIPPLE IN REFLECTION AMPLIFIERS

In the previous section, curves of ripple against gain

for optimum reflection amplifiers were given. A con-

sideration of these results shows that the ripples ob-

tained in the optimum case are often rather excessive.

Gain flatness requirements may prohibit the use of the

optimum network and so an investigation c)f anlplifiers

having Chebyshev response in the same way as the

optimum ones but having nonoptimum ripples must be

carried out. This, of course, will reduce the bandwidth,

and the question to be answered is whether reducing the

ripple level for a specified minimum gain causes much

resultant loss of bandwidth. Fig. 9 shows curves of

bandwidth against ripple for various fixed gains and

various numbers of elements, from which it may be

seen that reduction of the ripple level has little effect

on the bandwidth achieved. For example, with 20 db

minimum gain, and n =4, the optimum amplifier has

a ripple of 2.6 db, and a normalized bandwidth of 1.07.

The ripple can be reduced to 0.58 db for a loss c)[ band-

width of 5 per cent. Similarly, in other cases, a sub-

stantial reduction can be made in the ripple level with-

out incurring much loss of bandwidth. l[n order to have

complete information about the various choices of

ripple available, one needs to know the phase char-

acteristics corresponding to the different ripple levels.

These can be found in the following manner:

I t’(jd) 1’ = ~+ ~, +1,,2T,,2ii

so that

I pf(j~) 1~ =
k’ + FT7’Z’(W)

1 + k’ + WT?L’(U) “
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Fig. 9—Bandwidth-ripple curves for various numbers of elements, and minimum gains of (a) 15 db; (b) 17 db; (c) 20 db; (d) 23 db.

p’(s) is found from the left-hand plane poles and zeros

of ] p(jo) I z =p’(s) P’( —s) [ ,=j~ which are, respectively,

‘sin {y;’)”} ‘inh:sinh-’drr

“cos{(’mi’)”} cOsh:sinh-ldT’

and

‘sin{%7}‘inh:sinh-+
“cos{(’mzvl Cosh+sinh-’+

where m=l,2,3, . . tn.

Now if

ml + TZI
p’ (s) = 1

mz + nZ

where ml mz are even and nl n~ are odd, it may readily

be shown that p(s) = l/p’( –s), so that the group delay

responses of p(s) and p’(s) are identical. Thus the group

delay tg( = dq5/d~) is given by

[

mlnl’ — nlml’ mznzf — n2m2’
—

mlz + nlz mza f n22 1 s=jm

Prime indicates derivative with respect to s. Fig. 10

shows group delay-frequency curves for a minimum

gain of 20 db, with various numbers of elements and

ripples, from which it is seen that a considerable im-

provement in group delay performance is obtained from

use of nonoptimum ripples. The ripples chosen cor-

spond to optimum bandwidth, 95 per cent optimum

bandwidth, and 90 per cent optimum bandwidth.

DESIGN PROCEDURE

In this section the design of an optimum broad-band

tunnel-diode amplifier will be considered by reference to

the curves already given, and some variations with non-

optimum bandwidth will also be discussed.

Let us assume that a simple singly resonant tunnel-

diode amplifier has the response curve (b) shown in Fig.

11, when the precautions outlined by Getsinger [7],

have been taken to obtain the widest possible band-

width. It is not implied that the actual performance

given by this curve could necessarily be obtained with a
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Fig. 10—Group delay response of broad-band amplifiers with 20

practical diode. The “unlikely” value of maximum

gain is explained in Appendix II. It is assumed that this

curve has been obtained by tapering the circulator im-

pedance to a value Roy which is known. It is desired to

approximate the diode by a parallel combination of —R

and C, which can be done to a fair degree of accuracy

[7]. The quantity of interest is the RC product. This

can be obtained from the curve by a procedure which is

equivalent to Getsinger’s [7] but involves the 3 db band-

width (B c/s) rather than the half -db-gain bandwidth.

It is shown in Appendix I that if G is the center fre-

quency power gain

(G’” – 1)(1 – 2/G)’”B = -& ~

From Fig. 111 G=20.89 db and B = 1.25 kmc:

.—

T
u
v
a
* 20 –!—
h
u
5
n I “
0.2
0 T
G ripple -

10
n,

1.8d I

0.29db

0.12db

o
— “

-1o. 02 ~4 ~6
‘ ; ‘ ‘$ ~

0.8 I l.:r-
‘4 ((0 “6

(d)

db minimum gain and (a) n=2; (b) n=2; (c) n=4; (d) n=5.

RC = 25.4 X 10–12 sec.

To calculate the potential bandwidth to be obtained at

this gain we make use of (6) which yields B = 8.2 kMc

with an infinite number of elements in the matching net-

work. For any finite number of elements we refer to Fig.

5. The normalizing frequency for the bandwidth scale is

l/27rRC = 6.27 kMc, so values on the bandwidth scale

are fractions of 7.27 kMc in this case. Tlhus, for example,

with 20.89 db gain n = 2 gives a bandwidth of 4.14 kMc,

n= 3 gives 5.58 kMc and n = 4 gives 6.65 kM[c. Referring

to Fig. 6 we find the corresponding ripples to be 7.5 db,

4.1 db, and 2.6 db. Now since the ripp[es are rather

high for most applications we should exannine what is

the cost in terms of loss of bandwidth of reducing these

ripple levels. Referring to the curves of Fig. 9(c) for 2?
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Fig. 1l—Gain-frequency response of single tuned tunnel-
diode amplifiers.

clb gain, which is the nearest to our value of 20.89 db,

and assuming that the same reduction in bandwidth will

occur so, for example, with n = 3 if the bandwidth is re-

duced by 5 per cent compared to the optimum the ripple

is reduced from 4.1 db to 1.2 db, with the corresponding

improvement in group delay response as shown in Fig.

10(b).

Taking the specified minimum gain of 20.89 db and

the single tuned amplifier of Fig. 11, together with a

ripple of 1.2 db and a bandwidth corresponding to 95

per cent of the optimum, i.e., 5.3 khflc, the previous

discussion shows that n = 3 will meet the specification,

and it remains only to calculate the element values of

the coupling network required. The curves given earlier

would clearly indicate whether a particular specification

was possible at all, and if so, the number of elements re-

quired.

In order to calculate the element values, x and y of

(7) must first be calculated. These turn out to be

x = 1.64; y = 0.454, respectively.

As a check on x and y, we can compute RC co. which

turns out to be 0.844 instead of 0.89, the discrepancy

being due to the use of the curves for 20 db instead of

20.89 to calculate bandwidth and ripple. We shall

assume x and y to be correct. If the resultant response is

not acceptable, one can construct curves for a gain of

20.89 db and find x and y exactly. In calculating the

values of the other elements we can take gl as 0.89, the

correct value, together with the values of x and y just

calculated. This then gives

g, = 0.776

g~ = 0,59,

Now the circulator admittance go is given by

go+l
— = G’i’ max (n even)
go–l

go+l
— = G’/2 min (JZ odd).
go–l

In our case g,= 1.2.

All impedance levels are normalized to 1 Q negative

resistance. If, as previously mentioned, the circulator

impedance which gave the original curve is known, this

corresponds to an n odd choice. That is to say that if

this admittance is go’, the negative admittance is given

by

go’+g
— = G minllz,
go’ – g

hence g is found and the values in the filter are un-

normalized, with respect to the magnitude of the negative

resistance. The remaining steps are to unnormalize with

respect to bandwidth, and to resonate each element to

the required center frequency.

As a second design example let us assume that the

maximum ripple in the gain response is limited to 1 db.

We take the minimum gain as 20.89 db and assume that

a bandwidth of 3 kMc is required starting with the

singly-resonant amplifier with the response curve, line

bof Fig. 11.

3 kMc expressed as fraction of 6.27 kMc is 0.48, and

from Fig. 5 the largest bandwidth obtainable with

20.89 db gain is 0.66 for n= 2 and 0.89 for n =3, with

corresponding ripples of 7.85 db and 4.35 db (from Fig.

6). Referring now to Fig. 9(c), which is drawn for a

minimum gain of 20 db, the nearest to our value of

20.89 db, we can see that for 1 db ripple the bandwidth

is reduced to 0.818 of the maximum for n= 2 and 0.935

of the maximum for n = 3. These then yield bandwidths

of 3.38 kMc and 5.2 kMc, respectively. Thus our design

specification can be realizedwith n = 2 and the remaining

steps are the same as for the previous example.

APPENDIX I

Since we are considering the tunnel diode to be rep-

resented by a capacitance in parallel with frequency-

independent negative resistance, we may simplify

Getsinger’s [7] slope parameter x to COJOas pointed out

by him. Also, instead of taking the half-decibel-gain

bandwidth we may take the 3 db bandwidth to specify

the response curve.

The power gain on this assumption is given by

()

u 2

go+g–jc@o —–N
~o co

G=

() ‘
go–g+jctio ~–fl

@o m

and the 3 db bandwidth is given by the difference b~-
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tween the co values at which G is reduced to half GO

where

()

g+go~
GO= —

g–go “

Solving this we get for the 3 db bandwidth in cycles per

second

1
B=

rRC(G1/2 — 1)(1— 2/’G)1/2 ~

and this is the equation used in the text to calculate RC.

APPENDIX II

In the design of high-frequency tunnel-diode ampli-

fiers, some difficulty arises in determining the gain and

center freqeuncy. The expression for gain quoted in

Appendix I should read

G=
go + g(m) – j~(@) 2

go – g(u) + j~(c~)

where —g(u) and B(a) are the input conductance and

susceptance of the tunnel diode, respectively.

The condition for maximum gain is not simply that

B(rJ) = 0 as can readily be seen by taking the derivative

of G, and so the maximum gain is not only a function of

g(uo) but of B(tio) as well. To illustrate this effect a par-

ticular tunnel-diode equivalent circuit has been

assumed, and nominal gains of 15 db, 20 db and 25 db

at 10 kMc have been set by choosing appropriate values

of go on the assumption that B(u) = O at 10 kMc. The

actual response curve in each case was then computed

and these curves are shown in Fig. 11. It may be seen

that maximum gain in each case did not occur at 10

kMc [where B(rJ) = O] but at some higher frequency,

and the actual maximum gain exceeded the nominal

value set at 10 kMc. Thus in order to calculate the tun-

ing inductance and circulator impedance for a given

center frequency and gain, it is not sufficient to resonate

the diode at the required frequency, and then calculate

go. The exact equation for G must be used, and the error

incurred in using the simplified procedure can ibe seen

from Fig. 11. This discrepancy is not large for the

equivalent circuit of the diode assumed in computing the

curves of Fig. 11, but other equivalent circuits can give

greater inaccuracies.
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