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Summary—The design procedure for optimum broadband nega-
tive-resistance amplifiers is given, by reference to the work of Fano
[8], on the broadband matching of arbitrary impedances. Complete
sets of curves are given which indicate the limits on the gain-band-
width performance which can be achieved for a particular negative-
resistance device, while also showing the ripple in gain and the
resulting phase response obtained. The optimum amplifiers are
also compared with others of the same class, and it is found that
considerable advantage in terms of ripple and phase response can be
gained by using nonoptimum designs in certain cases. The paper
also includes explicit formula for the element values of the matching
network applicable to both optimum and nonoptimum designs. A
design example is given for a tunnel-diode amplifier.

INTRODUCTION

HE REFLECTION type negative-resistance am-
I plifier nowadays displays very desirable char-
acteristics for many applications. The amplifier
consists of a negative resistance terminating one port of
a circulator, which amplifies and reflects a wave in-
cident upon it. The circulator separates the incident and
reflected waves. Several devices such as tunnel diodes,
parametric amplifiers, and masers display a negative in-
put resistance over some part of the microwave band,
together with associated low-noise properties, which
render them attractive in this mode of operation. The
parametric amplifier and maser suffer the disadvantage
of having inherent narrow bandwidths, but have very
low noise factors, while the tunnel diode has an inher-
ently broader bandwidth but poorer noise factor. The
insertion of a lossless two-port network between the
negative-resistance device and the circulator port which
it would otherwise terminate yields the possibility of
absorbing the energy storage elements associated with
the negative resistance which limit the amplifier band-
width. The design of this lossless two-port network for
use with parametric amplifiers has been considered by
Matthaei [1], Kuh and Fukada [2], and by Kyhl,
McFarlane and Strandberg [3] (in restricted form) for
the maser. The application of this principle to the tunnel
diode has also received considerable attention [4]-[6].
The design of the two-port coupling network is ac-
complished by the use of a low-pass lumped circuit
prototype network, which is then transformed to the
required impedance level and center frequency. Finally
each resonant circuit in the lumped element filter has to
be approximated by a microwave resonator.
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A recent paper by Getsinger [7] gives a design pro-
cedure for reflection type amplifiers of the configuration
just discussed, based on tables of element values for the
low-pass prototype network. In that paper the matching
network was chosen to have a Chebyshev response for
the gain-frequency characteristic, and the properties of
various networks of this class were tabulated. The work
presented here is also based on a Chebyshev reponse for
the gain-frequency characteristics, but by reference to
the work of Fano [8] the limits on the achievable per-
formance are established, and comprehensive design
curves are given which enable a rapid design to be ac-
complished. An amplifier is considered to be optimum
if it has the largest bandwidth for a given number of
elements in the coupling network and a given negative-
resistance device. Closed formulas are given for the
element values of the prototype filter from work by
Levy [9].

TaeE Low-Pass ProtoTYPE COUPLING NETWORK

The type of negative-resistance element considered
here consists of a negative resistance, — R, shunted by a
capacity, C. It has been shown [7] that practical
negative-resistance devices approximate this ideal model
to a good degree of accuracy over bandwidths of less
than 20 per cent. The problem to be solved may be
stated by reference to Fig. 1 which shows a circulator of
characteristic impedance, R;, a lossless coupling net-
work, N, and the idealized negative resistance. The
power gain of this amplifier is the square of the modulus
of the reflection coefficient, p, at the terminals 22/, but
since N is lossless this is also the modulus of the reflec-
tion coefficient at the terminals 11/, so that

G = l P

2

The gain is ideally required to have a specified value

Ro f 2 N

load Ry

Fig. 1—Circulator and negative resistance with lossless
coupling network N.
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over some bandwidth, w;—w., and to be zero outside
that band. Transformed to low-pass terms this means a
specified gain from 0—w,, where w,=w; —ws, and zero
above w..

Aron [5] has shown that if a lossless network termi-
nated in a positive resistance, R has an input reflection
coefficient p’, and the same network has a reflection co-
efficient p when terminated in — R,

Bode [10] and Fano [8], have solved the problem of
matching an RC load to a pure resistance in the case
where R is positive and since the reflection coefficient for
the case where R is negative is simply related to the re-
flection coefficient when R is positive, the results for that
case may conveniently be adapted for use with negative
resistance.

Bode [10] has shown that (when R is positive)

fwl L o< ™ )
0ge — dw < ——
0 glﬂl RC

so, in matching problems associated with passive net-
works where a “worst match” is specified <.e., the
maximum value of Ip'|, (|p’maxl) is specified, the
integral in (1) indicates that the minimum value of
|| should not go to zero or the integrand will become
infinite at these points thus restricting the bandwidth
over which [p' max’ is not exceeded. Substituting ]p[
for l/lp’l in (1) and since |p| = (G2 we get

* T
log, GY2%dew < —— - 2
fo B G < @)

Specifying a maximum value for |p’| is equivalent to
specifying a minimum gain, G min, so that applying the
argument just given for passive networks, (2), shows
that for a specified value of G min, the maximum gain
should not approach infinity at any point or the effec-
tive bandwidth will be reduced.

Returning now to discussion of passive networks, (1)
shows that the ideal form of [p’| as a function of w is
that shown in Fig. 2. Fig. 3 shows the form of the cor-
responding ideal transmission characteristic (|¢/|?=1
—|p’|?). For this ideal characteristic the integral of
(1) becomes

1 T
. log, ———— = — 3)
p’l max RC

thus yielding the ultimate limit on the bandwidth for a
given degree of match and a specified load.

Since the ideal characteristic is obviously not realiz-
able in practice with a finite number of circuit elements,
we must seek an approximation which is realizable. The
Chebyshev approximation of the type

1
14 k2 + BT (w)

7] -
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is the most suitable, as pointed out by Fano [8], since
such an approximation gives the sharpest cutoff (apart
from the elliptic function filter) and thereby yields the
largest bandwidth in the sense required here.

Tn{w) is the Chebyshev function of order #, 1/(14k2)
is the zero-frequency insertion loss and £ is a parameter
determining the ripple.

Fig. 4 shows |#]? as a function of w. |p"| is given by
o= 1= |¢]2 e

B 4 BT (w)

o' |2 = )
14 B2+ B2 Tr%(w)
so that
k2 + h?.
'p/ |2 max = ——————
1452+ k2

and the matching network is constrained by the require-
ments that the first element is the load capacitance, C.

I _

[
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Fig. 2—1Ideal reflection coefficient-frequency response.
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Fig. 3—Ideal transmission-frequency response.
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Fig. 4—Chebyshev response with finite insertion loss
in the pass band.
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Fano [8], then solved the problem of minimizing
|p max | subject to this constraint.

Using Fano's notation we define variables ¢ and b
as follows

1+ k2

= sinh? na
h2

k?
— = sinh? nd

k2

from which
cosh nb
] Iy max[ =

cosh na

It may be shown [8], that the network constraint im-
posed by the load capacitance may be expressed in
terms of ¢ and b as

2 sinh ¢ — sinh &
w.RC B T

sin —

2n

(4)

minimizing |p’ max| subject to this condition yields

tanh na tanh »bd
= ; (5)
cosh &

cosh a

a and b are then found by solving (4) and (5) simul-
taneously.

This work on passive networks is related to the nega-
tive-resistance case by the transformation [p’|=1/]p|
=1/G"2, so that for the ideal shape of curve previously
discussed we have

s
e —

w, log, G =C (6)
which gives the ultimate limit on the gain-bandwidth
performance of the amplifier. For the same idealized
negative resistance used without a matching network
the corresponding expression (for G>>3 db) is (see
Appendix I)

2
1/2 . P —
(G D, 1%
where w, is the 3 db bandwidth, thus showing the
potential gain-bandwidth advantage obtainable through
the use of a matching network.
Again, since the ideal characteristic is not realizable,
we use the same approximation as before, but since
lp| =1/]p"| we have

14+ B+ 02
k2+h2

| p min|® = G min =

With this transformation Fano's optimization procedure
yields an optimum broad-band amplifier in the sense that
for a specified G min the bandwidth is the largest possi-
ble. Since the optimization procedure yields values for a
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and b in (4) and (5) the value of G max is obtained, thus
there is a particular value of gain ripple corresponding
to the largest bandwidth.

OrtiMUM BroAD-BAND REFLECTION AMPLIFIERS

Fano's results were presented in the form of graphs
showing bandwidth normalized with respect to the RC
terminating network and log, (1/|p’ max|), for various
numbers of elements in the matching network, thus en-
abling k£ and % to be determined.

Similar curves can be drawn for the negative-resist-
ance terminated network showing minimum gain
against normalized bandwidth, the ripple being that
corresponding to the optimum bandwidth. The normal-
ization factor on the bandwidth is 1/(2wRC) the cutoff
frequency of the load. Fig. 5 shows the curves for vari-
ous numbers of elements in the matching network, and
it is seen that the results converge rapidly towards the
infinite element limit for # greater than 8. These results
enable the gain-bandwidth limitation for any par-
ticular negative-resistance device and a given number of
elements to be determined. Correspondingly, they en-
able one to say how many elements are required for a
given specification of gain and bandwidth.

In the case of the passively terminated network no
attention is given to the ripple which results from
Fano’s optimization procedure since it is usually un-
important.

This ripple is

o max

o min
However, in the case of the reflection amplifier the cor-
responding ripple is

o min |? G max

— J
G min

o max

and this determines the ratio of the maximum gain to

the specified minimum gain in the amplifier pass band.
This ratio is given by

(1+ B + 1)

B+ B4 )

G max

G min

and since 7 and %k are determined from Fano’s results,
the corresponding gain ripple can be found. Figs. 6 and 7
show curves of gain against ripple and ripple against
bandwidth for various numbers of elements. The three
sets of curves in Figs. 5, 6, and 7 give the complete per-
formance in terms of gain, bandwidth, and ripple for the
optimum negative-resistance reflection type amplifier.

In order to complete the design once a particular »
has been chosen, the element values of the matching net-
work are required. These can be found from the re-
currence relationships derived by Levy [9] from Taka-
hasi’s results [11]. Referring to Fig. 8 the recurrence
relations are
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o;td b_
(o)

RIPPLE
@

o
\\%/
)

/7,

) o

2 / 2
(o)
(@] 10 20 30 40 50
GAIN-db

Fig. 6—Gain-ripple curves for optimum amplifiers.

, SO N

RIPPLE .- db

N LR

™

yAVA

[\ AN
\\\w\ N
4 \ \ \\ ~ N
\ R \\i\\\\
2 i S———
%-2 0.4 0.6 08

Fig. 7—Bandwidth-ripple curves for optimum amplifier.

) 9,

[T 1
BCRNSCIE
N

Fig. 8—Low-pass prototype filter.

AAAAA
WYYV
-

I 1.2 1.6 2
Normalised Bandwldth

507
T
2 sin —
2n
g1 = = RCCL)C
xr—=y
C 2r—1 C2r+1
4 sin - sin T
2n 2n
&r8ry1 =
. rm
2% + % + sin? — — 2xy cos —
7 n
r=1,2,3---n—1,
x and y are given by
. . . 8(G min — 1)) /2
x = sinh ¢ = sinh 1/# sinh™? { T
. . . G min — 1
y = sinh & = sinh 1/x sinh™! {—.——ﬁ——— L2
Gmin (6 — 1)

where ¢ and b are defined in the previous section and
w, is the actual bandwidth,

G min and § are found from Figs. 5 and 7, and the use
of these results will be given in a later section.

THE GAIN RIPPLE IN REFLECTION AMPLIFIERS

In the previous section, curves of ripple against gain
for optimum reflection amplifiers were given. A con-
sideration of these results shows that the ripples ob-
tained in the optimumn case are often rather excessive.
Gain flatness requirements may prohibit the use of the
optimum network and so an investigation of amplifiers
having Chebyshev response in the same way as the
optimum ones but having nonoptimum ripples must be
carried out. This, of course, will reduce the bandwidth,
and the question to be answered is whether reducing the
ripple level for a specified minimum gain causes much
resultant loss of bandwidth. Fig. 9 shows curves of
bandwidth against ripple for various fixed gains and
various numbers of elements, from which it may be
seen that reduction of the ripple level has little effect
on the bandwidth achieved. For example, with 20 db
minimum gain, and #=4, the optimum amplifier has
a ripple of 2.6 db, and a normalized bandwidth of 1.07.
The ripple can be reduced to 0.58 db for a loss of band-
width of 5 per cent. Similarly, in other cases, a sub-
stantial reduction can be made in the ripple level with-
out incurring much loss of bandwidth. In order to have
complete information about the various choices of
ripple available, one needs to know the phase char-
acteristics corresponding to the different ripple levels.

These can be found in the following manner:

1
14 &%+ 2Tn*(w)

2

| 7 (jo)

so that

B2+ h2Tn%(w)
14 k2 + B2Tn2(w)

P

| o' (jo)
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Fig. 9—Bandwidth-ripple curves for various numbers of elements, and minimum gains of (a) 15 db; (b) 17 db; (c) 20 db; (d) 23 db.

p'(s) is found from the left-hand plane poles and zeros

of [p(jw)[2=p"(s) p'(—5)]|s=yu which are, respectively,
2m — D= 1 1T+ &2
sin {LU} sinh - sinpt YT
2n n h
2m — 1 1 V14 k2
+ j cos {(——)I} cosh — sinh™! ——,
7 n h
and
Cm—10)my .1 k
—sin {—— sinh — sinh—1 —
2n n k
em = .
4+ 7 cos {————— cosh — sinh™! —
2n n h
where m=1,2, 3, - + - n.
Now if
m1 + ny
pi(s) = ——>
M2 —+ N2

where m,; my are even and #, 1, are odd, it may readily
be shown that p(s) =1/p’(—s), so that the group delay
responses of p(s) and p’(s) are identical. Thus the group
delay tg(=d¢/dw) is given by

[mlill, — # 11%1’

mans — 712’}%2/]
7’}112 + ﬂlz s=jw

ma? + 151

Prime indicates derivative with respect to s. Fig. 10
shows group delay-frequency curves for a minimum
gain of 20 db, with various numbers of elements and
ripples, from which it is seen that a considerable im-
provement in group delay performance is obtained from
use of nonoptimum ripples. The ripples chosen cor-
spond to optimum bandwidth, 95 per cent optimum
bandwidth, and 90 per cent optimum bandwidth.

DEsiGN PROCEDURE

In this section the design of an optimum broad-band
tunnel-diode amplifier will be considered by reference to
the curves already given, and some variations with non-
optimum bandwidth will also be discussed.

Let us assume that a simple singly resonant tunnel-
diode amplifier has the response curve (b) shown in Fig.
11, when the precautions outlined by Getsinger [7],
have been taken to obtain the widest possible band-
width. It is not implied that the actual performance
given by this curve could necessarily be obtained with a
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Fig. 10—Group delay response of broad-band amplifiers with 20 db minimum gain and (a) n=2; (b) n=2; (c) n=4; (d) n=45.

practical diode. The “unlikely” value of maximum
gain is explained in Appendix Il. It is assumed that this
curve has been obtained by tapering the circulator im-
pedance to a value Ry, which is known. It is desired to
approximate the diode by a parallel combination of —R
and C, which can be done to a fair degree of accuracy
[7]. The quantity of interest is the RC product. This
can be obtained from the curve by a procedure which is
equivalent to Getsinger’s |7 | but involves the 3 db band-
width (B c¢/s) rather than the half-db-gain bandwidth.

It is shown in Appendix I that if G is the center fre-
quency power gain

G2 — 1)1 — 2/Q)B =

wRC .
From Fig. 11, ¢=20.89 db and B=1.25 kmc,

RC = 25.4 X 10~% sec.

To calculate the potential bandwidth to be obtained at
this gain we make use of (6) which yields B=38.2 kMc
with an infinite number of elements in the matching net-
work. For any finite number of elements we refer to Fig.
5. The normalizing frequency for the bandwidth scale is
1/2mRC=6.27 kMc, so values on the bandwidth scale
are fractions of 7.27 kMc in this case. Thus, for example,
with 20.89 db gain # =2 gives a bandwidth of 4.14 kMc,
n=3 gives 5.58 kMc and n =4 gives 6.65 kMc. Referring
to Fig. 6 we find the corresponding ripples to be 7.5 db,
4.1 db, and 2.6 db. Now since the ripples are rather
high for most applications we should examine what is
the cost in terms of loss of bandwidth of reducing these
ripple levels. Referring to the curves of Fig. 9(c) for 20
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Fig. 11-—Gain-frequency response of single tuned tunnel-
diode amplifiers.

db gain, which is the nearest to our value of 20.89 db,
and assuming that the same reduction in bandwidth will
occur so, for example, with # =3 if the bandwidth is re-
duced by 5 per cent compared to the optimum the ripple
is reduced from 4.1 db to 1.2 db, with the corresponding
improvement in group delay response as shown in Fig.
10(b).

Taking the specified minimum gain of 20.89 db and
the single tuned amplifier of Fig. 11, together with a
ripple of 1.2 db and a bandwidth corresponding to 95
per cent of the optimum, <.e., 5.3 kMc, the previous
discussion shows that =23 will meet the specification,
and it remains only to calculate the element values of
the coupling network required. The curves given earlier
would clearly indicate whether a particular specification
was possible at all, and if so, the number of elements re-
quired.

In order to calculate the element values, x and y of
(7) must first be calculated. These turn out to be

x = 1.64; v = 0.454, respectively.

As a check on x and y, we can compute RC w, which
turns out to be 0.844 instead of 0.89, the discrepancy
being due to the use of the curves for 20 db instead of
20.89 to calculate bandwidth and ripple. We shall
assume x and y to be correct. If the resultant response is
not acceptable, one can construct curves for a gain of
20.89 db and find x and y exactly. In calculating the
values of the other elements we can take g; as 0.89, the
correct value, together with the values of x and y just
calculated. This then gives

g3 = 059.
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Now the circulator admittance g is given by

+1
80 . = GY?max (n even)
8o —

+1
g . = G*Y? min (» odd).
8o —

In our case go=1.2.

All impedance levels are normalized to 1 € negative
resistance. If, as previously mentioned, the circulator
impedance which gave the original curve is known, this
corresponds to an # odd choice. That is to say that if
this admittance is g/, the negative admittance is given
by

g +¢g
g — ¢

= G minl/2,

hence g is found and the values in the filter are un-
normalized, withrespect to the magnitude of the negative
resistance. The remaining steps are to unnormalize with
respect to bandwidth, and to resonate each element to
the required center frequency.

As a second design example let us assume that the
maximum ripple in the gain response is limited to 1 db.
We take the minimum gain as 20.89 db and assume that
a bandwidth of 3 kMc is required starting with the
singly-resonant amplifier with the response curve, line
bof Fig. 11.

3 kMec expressed as fraction of 6.27 kMc is 0.48, and
from Fig. 5 the largest bandwidth obtainable with
20.89 db gain is 0.66 for =2 and 0.89 for #=23, with
corresponding ripples of 7.85 db and 4.35 db (from Fig.
6). Referring now to Fig. 9(c), which is drawn for a
minimum gain of 20 db, the nearest to our value of
20.89 db, we can see that for 1 db ripple the bandwidth
is reduced to 0.818 of the maximum for #=2 and 0.935
of the maximum for #=3. These then yield bandwidths
of 3.38 kMc and 5.2 kMc, respectively. Thus our design
specification can be realized with # =2 and the remaining
steps are the same as for the previous example.

APPENDIX [

Since we are considering the tunnel diode to be rep-
resented by a capacitance in parallel with frequency-
independent negative resistance, we may simplify
Getsinger’s [7] slope parameter x to cwg as pointed out
by him. Also, instead of taking the half-decibel-gain
bandwidth we may take the 3 db bandwidth to specify
the response curve.

The power gain on this assumption is given by

. w (O] 2
go+ g — jewo| — — —

Wy w

. w Wo ’
go — g T jewo{ — — —
wo w

and the 3 db bandwidth is given by the difference be-
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tween the w values at which G is reduced to half G,

where
+ 2
Gy = <_g__g> .
§— 8o
Solving this we get for the 3 db bandwidth in cycles per
second

1
B = s
TRC(GY2 — 1)(1 — 2/G)M?

and this is the equation used in the text to calculate RC.

ArpeNDIX 11

In the design of high-frequency tunnel-diode ampli-
fiers, some difficulty arises in determining the gain and
center {reqeuncy. The expression for gain quoted in
Appendix I should read

o |Bt e — B
g0 — &) +B()

where —g(w) and B(w) are the input conductance and
susceptance of the tunnel diode, respectively.

The condition for maximum gain is not simply that
B(w)=0 as can readily be seen by taking the derivative
of G, and so the maximum gain is not only a function of
g(wy) but of B(wg) as well. To illustrate this effect a par-
ticular tunnel-diode equivalent circuit has been
assumed, and nominal gains of 15 db, 20 db and 25 db
at 10 kMc have been set by choosing appropriate values
of gy on the assumption that B(w)=0 at 10 kMc. The
actual response curve in each case was then computed
and these curves are shown in Fig. 11. It may be seen
that maximum gain in each case did not occur at 10
kMc [where B(w)=0] but at some higher frequency,
and the actual maximum gain exceeded the nominal
value set at 10 kMc. Thus in order to calculate the tun-
ing inductance and circulator impedance for a given
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center frequency and gain, it is not sufficient to resonate
the diode at the required frequency, and then calculate
go. The exact equation for G must be used, and the error
mcurred in using the simplified procedure can be seen
from Fig. 11. This discrepancy is not large for the
equivalent circuit of the diode assumed in computing the
curves of Fig. 11, but other equivalent circuits can give
greater inaccuracies.
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